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Autonomous cars (Self driving cars)



Desert race too tough for robots



2005: 5 out of 23 teams completed it



2007: Urban challenge - drive a 96km urban course



Google car - no steering wheel, no pedals



Autonomous (self-driving) computing systems

§ Complex computing systems should have autonomic 
properties

§ Independently take care of the regular maintenance and 
optimization tasks 

§ Reduce workload on the system administrators 
§ Distilled four properties of a self-managing (i.e. autonomic) 

system: 
– Self-configuration: adapting to dynamically changing environments
– Self-optimization: tuning resources and balancing workloads to 

maximize use of IT resources 
– Self-healing: discovering, diagnosing, and acting to prevent disruptions 
– Self-protecting: anticipating, detecting, identifying, and protecting 

against attacks



Monitor-Analyse-Plan-Execute

Goal



DeepMind AI Reduces Google Data Centre Cooling 
Bill by 40%

https://deepmind.com/blog/deepmind-ai-reduces-google-data-centre-cooling-bill-40/



Distributed Science Ecosystem



X-ray source 
brilliance:
18 orders
of magnitude
in 5 decades!

Computer 
speed:
12 orders
of magnitude
in 6 decades

X-ray sources 
produce a lot of 
photons, which 
translates to a 

lot of data
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Huge amount of data from extreme scale 
simulations and experiments



Systems have different capabilities
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Identified infrastructure bottlenecks

Outcome: ALCF upgraded data transfer nodes

Checksums Checksums
No 

checksums
No 

checksums
No 

checksums



Pete Beckman, Argonne National Laboratory

Transferring 1 PB in 6 hours

Chicago

Dallas



Improved data transfer rates between supercomputer 
facilities by 1.5x to 3.5x 
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Scaled light source codes to leadership computers

X-ray nano/microtomography
Bio, geo, and material science imaging.
(Bicer, Gursoy, Kettimuthu, De Carlo, et 
al.). Innovative in-slice parallelization 
method permits reconstruction of 
360x2048x1024 dataset in ~1 minute, 
using 32K BG/Q cores, vs. many days on 
typical cluster: enables quasi-instant 
response

2-BM

Advanced Photon Source

Micrometer porosity  
structure of shale samples



Pete Beckman, Argonne National Laboratory

Why are we still tuning?



Core hours lost due to suboptimal failure 
management



Why are we still troubleshooting?



Why are we still designing?



1920 telephony



Autonomous (smart) system

§ Definition: achieves a given goal by tuning the parameters 
appropriately based on environmental conditions without 
human intervention

– Ability of self awareness - learns the relationship between a 
performance metric, tuning parameters and the environmental 
conditions

– Strive to achieve a goal for that performance metric  

§ How does it differ from automation?
– Automation is an execution of predefined rules
– Automation works in a given environment but has to be adapted if the 

environment changes
– Autonomous system adapts on its own to a changing environment



Autonomous network



Architecture of an individual autonomous system
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Autonomous science infrastructure architecture



Autonomous science infrastructure architecture
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Autonomous performance module for DTN
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Concurrent transfers



Smart data transfer node
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• Data transfer parameters. A transfer tool may have multiple tunable parameters, whose value not
only a↵ects transfer performance but also decides DTN occupancy. The overall DTN performance,85

e.g., total bytes transferred per day, is highly related with its load. Improper schedule of tasks make
the DTN overloaded and operate in an ine�cient way [6].

In this preliminary work, we consider the last item, which directly determines DTN state and load, to
make a DTN continuously operate in its optimal point.

3. Smart data transfer node90

The smartness of a DTN is achieved by using its self-awareness ability. The self-awareness includes actively
sensing the current state of the environment and discover knowledge about the cost and benefits of its
configurations. Figure 3 demonstrates the work process of a smart DTN. A ‘chunk’, which is a portion of a
file, is the scheduling unit for KE. KE determines the size of each chunk and the tunable parameters to be
used for each chunk. It also determines the number of concurrent chunks to be transferred at any instance.95

It determines these values adaptively based on the current state of the system. Since the state of the system
varies dynamically, KE uses chunk as a scheduling unit instead of the entire file. Depending on the perceived
frequency of variation, KE will vary the chunk size dynamically as well.
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Figure 3: The work process of a smart DTN. The architecture of KE and step 6 are detailed in Figure 4.

As the “brain” of a smart DTN, the KE maintains information about the current state and knowledge
about data transfer behavior. As shown in Figure 3, we explain the work process of a smart DTN and its100

self-learning process as follows.
1 A file transfer tool requests a file to transfer from the KE. The KE 2 checks the current DTN state and
3 responds to the transfer tool with a chunk of file and corresponding optimal transfer parameters (the
steering action). 4 The transfer tool transfers the associated chunk with the parameters and monitors the
aggregate DTN throughout during this transfer. 5 Once completed, DTN’s average aggregate throughput105

is reported to the KE as a reward for its actions. 6 Based on the reward (encourage or discourage), the
KE updates its internal model parameters to improve its decision policy.

(details are shown in Figure 4).
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Results



Autonomous science infrastructure architecture



Smart instrument – self configure and self optimize



Autonomous stream processing system 
that allows data streamed from beamline 
computers to be processed in real time on 
a remote supercomputer with a control 
feedback loop used to make decisions 
during experimentation
– Reduce data acquisition time by 22–44% for the 

datasets considered in our experiments

Experiment monitoring and steering
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Autonomous science infrastructure architecture



Autonomous performance module for DTN
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Autonomous power module for DTN
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Autonomous DTN

DTN’s autonomous 
performance module

Inference of 
Trained ML model

Train Machine 
Learning model

Policing 
Module

(filter abnormal actions)

Realtime

History 
Batch

Confidence
Action

State data

Deploy

EnvironmentState data

Reject, 0 reward

Expose to Env.

Cost/performance goal 
assigned by institute KE 

HPC state
Storage state
Network state
… … 

Power goal
Performance goal
… … 

Power goal
Performance goal
… … 

DTN’s autonomous power 
module



Acknowledgment



Questions


